


# GRTgaz : 32 000 km de réseau gazier au cœur de l'Europe !





### Un métier industriel:

- Pression, débit (Gm3/an)
- Diamètre, puissance de compression

### Un métier de services :

- B-to-B via Internet
- Un produit : la capacité (MWh/j)
- Des places de marché

# Jupiter 1000 : 1<sup>er</sup> démonstrateur industriel de Power-to-Gas en France

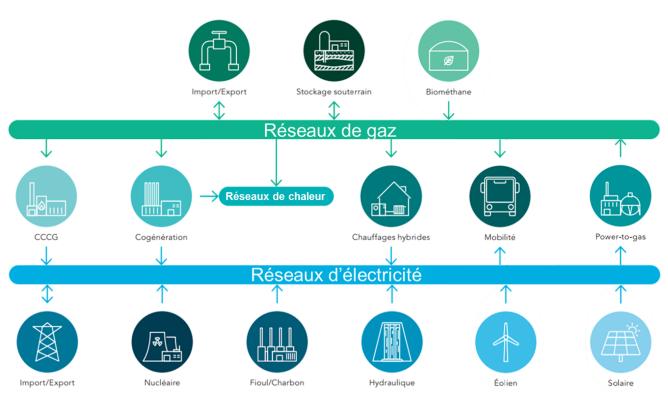


www.Jupiter1000.eu





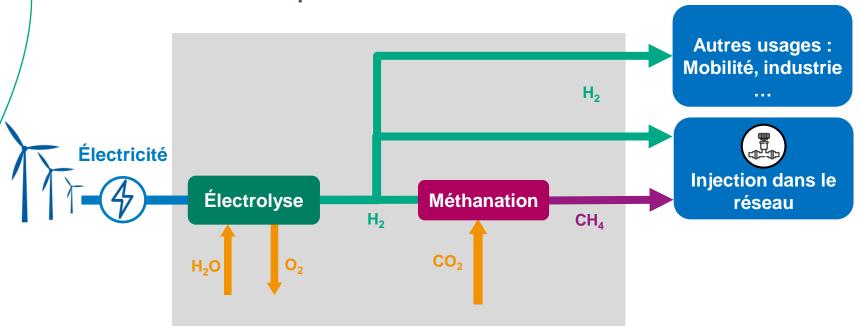
# Les atouts du réseau de gaz flexibilité et stockage




### **Opportunités**

Le système gaz

stockage
et flexibilité
en complément
des énergies
renouvelables
électriques
intermittentes






## De l'électricité... au gaz !



Quand le réseau de gaz offre la possibilité de stocker massivement des sources électriques renouvelables.



$$4 H_2 + CO_2 \rightarrow 2 H_2O + CH_4$$

Le Power to Gas permet d'interconnecter les réseaux

La méthanation permet d'accroitre les synergies grâce à des volumes plus importants



## Le Power-to-Gas, une filière intégrée et vertueuse



#### SOUTENIR LES RÉSEAUX ÉLECTRIQUES



Valoriser les surplus d'électricité issus de la production renouvelable intermittente de nos clients



Contribuer à la bonne tenue des réseaux électriques et à la gestion des congestions

Optimiser le système énergétique pour l'ensemble de la collectivité

#### DÉCARBONER LE RESEAU DE GAZ



**S'adapter à nos clients** qui produiront et consommeront du gaz renouvelable



Remplacer du gaz fossile par du gaz renouvelable : hydrogène ou méthane de synthèse



**Capter et recycler du CO2** via une étape de méthanation

#### PRODUIRE DU GAZ LOCALEMENT

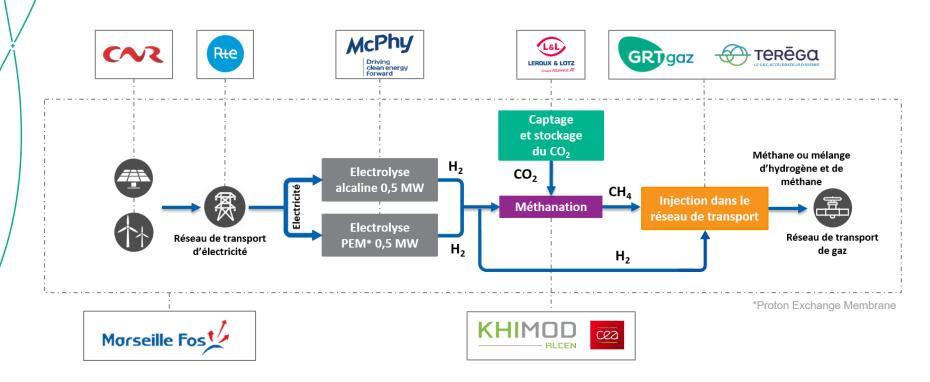


Remplacer du gaz importé par du gaz produit localement



Réduire la dépendance énergétique du pays




Développer une filière créatrice de nombreux emplois locaux et des technologies à l'export



# Un démonstrateur industriel qui réunit les acteurs de la filière



Le projet Jupiter 1000 est le fruit de la collaboration de 9 partenaires industriels français





### Les objectifs du démonstrateur à court terme





Valider le procédé comme mode de stockage vis à vis du réseau électrique

- Valider des services rendus au réseau électrique (modularité ...)
- Valider les technologies, notamment de l'électrolyse, de la méthanation, et du captage de CO2
- Valider l'injection d'hydrogène dans les réseaux de gaz

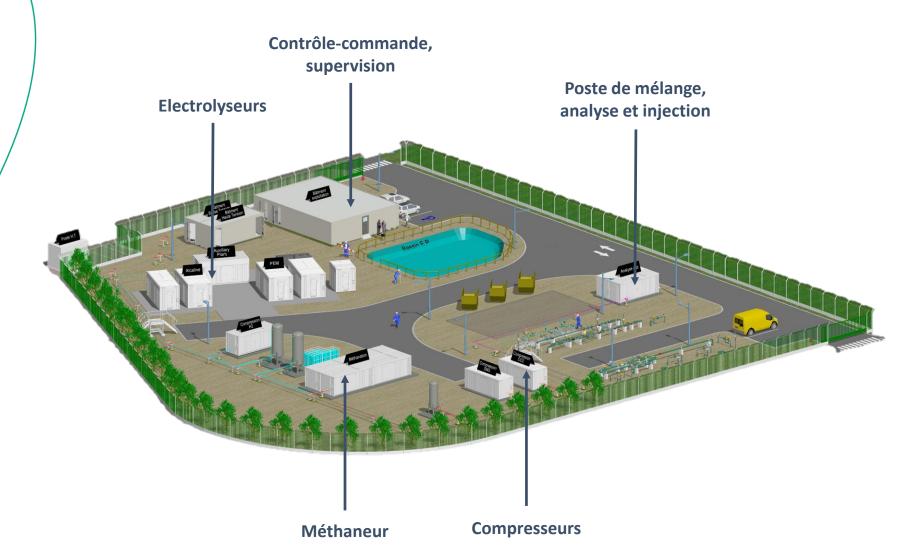


Construire un Business Model

 Faire émerger et traiter un à un les points durs afin d'atteindre la rentabilité



Lancer la filière Power-to-Gas en France


 Construire les conditions favorables à l'émergence d'une filière industrielle exportatrice de technologies

Le meilleur moyen de convaincre est de passer du concept à un outil réel

## 0

### Plan d'implantation du démonstrateur







Électrolyseurs **Compresseur H<sub>2</sub>** Stockages H<sub>2</sub>

Poste mélange & injection

**Bâtiment analyse** 

**Bâtiment exploitation** 



## Planning



| 2014 2015          | Préparation du projet / Financements                     |
|--------------------|----------------------------------------------------------|
| Mars 2016          | Signature des accords / Lancement du projet Jupiter 1000 |
| Décembre 2016      | Dossier d'ingénierie                                     |
| Juillet 2017       | Autorisations administratives                            |
| T1 2020            | Fin de la construction H2                                |
| T1 2020            | 1ère injection Hydrogène (H2)                            |
| 2020               | Construction méthanation / CO2                           |
| 2021               | 1ère injection Méthane de synthèse (CH4)                 |
| 2020 – 2021 – 2022 | Exploitation / Phase d'essais                            |
|                    |                                                          |

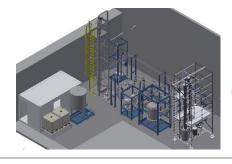
Le projet est actuellement en fin de réalisation sur la partie H2, Il va basculer en phase d'essais Œ

Jupiter 1000 : Un projet d'expérimentation pour préparer le réseau de demain



## Principaux équipements innovants








#### **Électrolyseurs alcalin et PEM**















Réacteurs de méthanation (x10)





Canalisation d'acheminement CO<sub>2</sub>



Un agencement de technologies innovantes à tester en conditions d'exploitation réelles



# McPhy – Développement et installation des ◆ Jupit er électrolyseurs



- Deux électrolyseur de 500 kW chacun sont installés sur le site
  - Électrolyseur alcalin
  - Électrolyseur PEM (Proton Exchange Membrane)
- L'objectif est de comparer les 2 technologies : efficacité, flexibilité, durée de vie...

### **Alcalin**



- Technologie mature,
- Durée de vie



#### **PEM**



- Flexibilité,
- Dimensions réduites



# Khimod & CEA – Réacteurs de méthanation \*\*\* Jupiter





### Apports spécifiques au projet Jupiter 1000 :



- > Fabrication des réacteurs de méthanation : les unités (basées sur une technologie développée par le CEA) combinent H<sub>2</sub> et CO<sub>2</sub> dans le but de produire du méthane de synthèse
- Méthanation catalytique
- Conception innovante adaptable, modulaire, et très compacte
- > 10 réacteurs sont nécessaires pour le projet, chacun produisant 2,5 Nm3/h de CH<sub>4</sub>
- Niveau de conversion élevé : 93 %

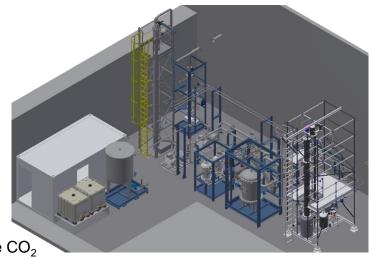




## Leroux & Lotz – Captage du CO<sub>2</sub> industriel • US



### Apports spécifiques au projet Jupiter 1000 :




- > Développement de la technologie de capture du CO2 : Permet de capter le CO2 présent dans les fumées dégagés par Ascometal par un processus basé sur les amines.
- Le dispositif est localisé à proximité des cheminées de l'industriel **(ASCOMETAL)**



### **Fonctionnement:**

- ▶ Une fois le CO2 capté, Leroux & Lotz le purifie, le sèche et le met sous pression afin l'envoyer réacteur de jusqu'au de méthanation via pipeline
- Flux de  $CO2 = \sim 40 \text{ kg/h}$



Équipement de capture de CO<sub>2</sub>

- GRTgaz : définir un poste d'injection d'hydrogène dans le réseau de gaz
  - Injecter parfois du méthane de synthèse, parfois de l'hydrogène
  - Assurer le mélange
    - Pilotage, automatismes de sécurité ...
  - Garantir le respect des spécifications du gaz
    - < 6 % H2, PCS, odorisation ...</p>
    - Analyses, mesure ...
  - Surveiller et analyser les impacts de l'hydrogène



**GR** I gaz

Téléchargeable sur www.grtgaz.com/solutions d'avenir



## Études technico-économiques



- Jupiter 1000 inclut un projet d'analyse technico-économique
- L'analyse permet :
  - D'expérimenter le démonstrateur des conditions réelles,
  - D'évaluer les conditions de rentabilité de la filière Power-to-Gas en France

Réalisée en partenariat avec le CEA de Grenoble, la modélisation économique se base sur les données techniques de l'ensemble des partenaires du projet:

**Projections des** prix de l'électricité Le réseau de l'intelligence électrique

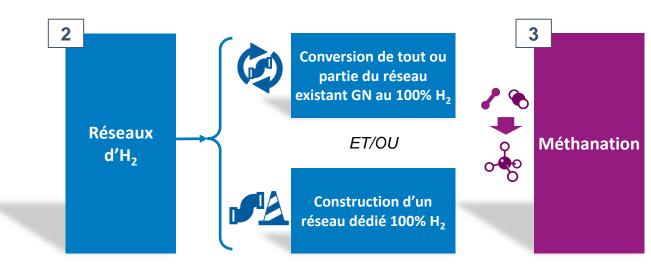






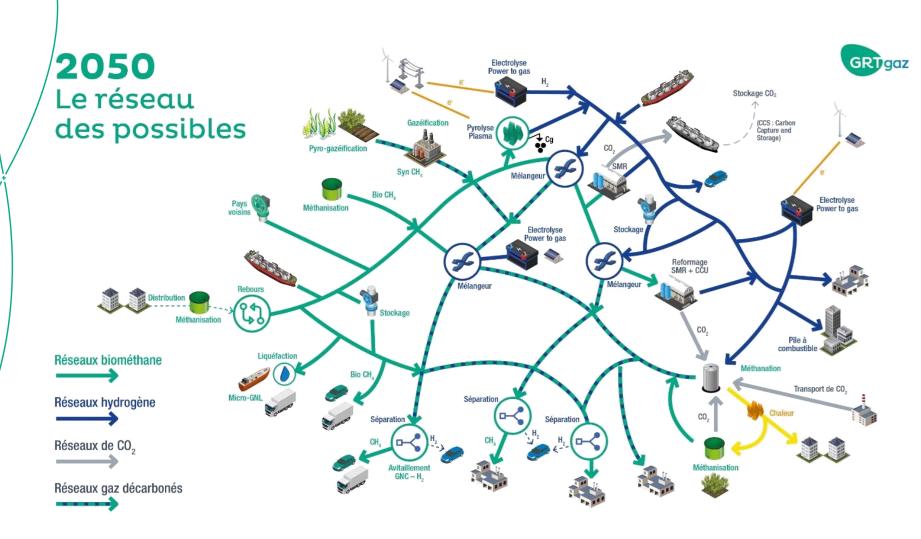





Chaque partenaire apporte des données pertinentes à l'ensemble du projet

La construction d'un démonstrateur est indispensable pour valider ou invalider les hypothèses données

# Trois voies possibles d'intégration d'hydrogène dans les réseaux de gaz en cours d'instruction








- Voies complémentaires, cohérentes avec un développement différencié de l'hydrogène dans les territoires, dépendant notamment :
  - Du mode de production : centralisé/décentralisé, fixe/variable, diffus/massif,
  - De la zone concernée : caractéristiques réseau, flux gaz
  - De la **temporalité des projets** : adaptations graduelles, « sauts » vers des cluster 100%H2

## 2050 Le réseau des possibles



## **Sylvain Lemelletier**





### Délégué Partenariats



### **Directeur de Projet**



### Président du Club Power to Gas



sylvain.lemelletier@grtgaz.com





Connecter les énergies d'avenir

grtgaz.com





